Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function.
نویسندگان
چکیده
The endothelium has emerged as an important modulator of vascular tone by producing both vasodilating and vasoconstricting substances. In vitro studies have demonstrated that endothelial cells produce endothelium-derived relaxing factor (EDRF), which promotes vasodilation via the stimulation of intracellular guanosine 3',5'-cyclic monophosphate (cGMP). However, the role of EDRF in the basal regulation of cardiopulmonary and renal function is not well defined. The present study was therefore designed to assess the function of EDRF by studying two groups of normal anesthetized dogs, of which one received a competitive inhibitor to EDRF generation, NG-monomethyl-L-arginine (L-NMMA; 50 micrograms.kg-1.min-1 iv), and the other received a vehicle. The L-NMMA infusion produced no significant increase in mean arterial pressure but marked increases in systemic, pulmonary, and renal vascular resistances compared with the vehicle group. Although renal blood flow decreased with L-NMMA, no changes were observed in glomerular filtration rate or sodium excretion. Associated with the cardiopulmonary and renal responses with L-NMMA was a modest increase in plasma endothelin (7.9 +/- 1.3 to 10.2 +/- 1.8 pg/ml, P less than 0.05), an endothelium-derived vasoconstrictor. No alteration was observed in plasma or urinary cGMP with EDRF inhibition. These cardiopulmonary and renal responses with L-NMMA may be attributed not only to EDRF inhibition but to an imbalance between endothelium-derived relaxing and contracting factors.
منابع مشابه
Nephrotoxicity of Isosorbide Dinitrate and Cholestasis in Rat: The Possible Role of Nitric Oxide
Background: Nitric oxide (NO), a major chemical form of endothelium-derived relaxing factor and an important regulator of vascular tone, is released by endothelial cells. The role of NO is not restricted to the vascular system, and it participates in the regulation of renal hemodynamics and renal excretory function. There are increasing evidences indicating that the elevated levels of NO play a...
متن کاملThe Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation
Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...
متن کاملRapid Communication Effects of Af-Monomethyl-L-Arginine and L-Arginine on Acetylcholine Renal Response
Intrarenal infusion of acetylcholine in meclofenamate-treated dogs significantly increased renal blood flow, diuresis, and natriuresis. Intrarenal infusions of either A '̂-monomethylL-arginine (inhibitor of endothelium-derived relaxing factor formation), or L-arginine (precursor of endothelium-derived relaxing factor formation) did not modify basal levels of those parameters. However, the infusi...
متن کاملEffects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor.
Ingestion of protein or intravenous infusion of amino acids acutely elevates glomerular filtration rate (GFR) and renal plasma flow (RPF) by unknown mechanisms. Endothelium-derived relaxing factor (EDRF), now known to be nitric oxide derived from metabolism of L-arginine, participates in local regulation of vascular tone. To investigate the hypothesis that EDRF may participate in the renal vaso...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 261 2 Pt 2 شماره
صفحات -
تاریخ انتشار 1991